dnes je 21.11.2024

Input:

Vliv teploty na složené výrobky z plastů

6.5.2015, , Zdroj: Verlag DashöferDoba čtení: 2 minuty

7.4.4.4 Vliv teploty na složené výrobky z plastů

Ing. Miloš Sova, CSc.

Teplotní pnutí

Při izotermickém ohřevu nebo ochlazení staticky určitě uloženého homogenního tělesa nevzniká v tomto tělese žádné teplotní pnutí (předpokládáme, že výchozí stav je bez napětí). Teplotní pnutí by obecně vznikala pouze při vystavení výrobku teplotním polím s gradienty teplot.

Při změně teploty složeného výrobku dochází v důsledku obecně rozdílných hodnot teplotní roztažnosti jeho jednotlivých částí ke vzájemnému bránění ve volných teplotních dilatacích těchto částí, které by jinak při teplotním rozdílu ΔT = T - T0 nastaly, nebýt tuhé vazby mezi částmi.

Představme si nejdříve, že obě části složeného výrobku typu přímého prutu-tyče s dvouose symetrickým průřezem na obr. ohřevu složeného prvku jsou od sebe navzájem separovány. Při změně teploty o ΔT by pak poměrná délková změna každé části činila

εTi = αiΔT, i=1, 2.

Ohřev složeného prvku:

V důsledku tuhé vazby mezi oběma částmi se rozdíl teplotních dilatací vyrovnává pružnou deformací obou složek. Pokud je např. α1 > α2 , bude část 1 namáhána tahem, část 2 tlakem. Tyč jako celek není nyní mechanicky zatěžována, takže výsledná osová síla v průřezech tyče je rovna nule:

Teplotní napětí

σT1 = S1 + σT2 S2 = 0,

kde σT1 , σT2 jsou teplotní napětí v obou částech. Při zachování soudržnosti je zřejmě makroskopická deformace tyče shodná s celkovými deformacemi obou částí. Ty jsou dány algebraickým součtem elastické deformace a teplotní dilatace, takže

Pro deformaci tyče tak obdržíme spojením obou rovnic vztah

Teplotní napětí je pak již dáno vztahem

σTi = EiT - αiΔT).

Pokud není průřez složené tyče geometricky i materiálově dvouose symetrický, vzniká při

Nahrávám...
Nahrávám...